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ABSTRACT

A probabilistic forecast to accurately predict contrail formation over the conterminous United States

(CONUS) is created by using meteorological data based on hourly meteorological analyses from the Ad-

vanced Regional Prediction System (ARPS) and the Rapid Update Cycle (RUC) combined with surface and

satellite observations of contrails. Two groups of logistic models were created. The first group of models

(SURFACE models) is based on surface-based contrail observations supplemented with satellite observa-

tions of contrail occurrence. The most common predictors selected for the SURFACE models tend to be

related to temperature, relative humidity, and wind direction when the models are generated using RUC or

ARPS analyses. The second group of models (OUTBREAK models) is derived from a selected subgroup

of satellite-based observations of widespread persistent contrails. The most common predictors for the

OUTBREAK models tend to be wind direction, atmospheric lapse rate, temperature, relative humidity, and

the product of temperature and humidity.

1. Introduction

Current numerical weather analysis (NWA) systems

are able to provide hourly meteorological data on hori-

zontal scales as small as 10 km. In principle, these high-

resolution NWAs, including the 20-km Rapid Update

Cycle (RUC; see Benjamin et al. 2004a,b) and the

University of Oklahoma Center for Analysis and Pre-

diction of Storms (CAPS) Advanced Regional Predic-

tion System (ARPS; see Xue et al. 2003), can provide

the meteorological information necessary to diagnose

contrail formation. Unfortunately, the straightforward

prediction of contrail-induced cloud cover from these

analyses is hindered by systematic and random measure-

ment errors. Duda and Minnis (2009, hereinafter Part I)

show that logistic regression modeling can provide a

method to deal with these errors and to diagnose con-

trail occurrence accurately based on NWA-derived at-

mospheric variables including temperature, relative

humidity, and vertical velocity.

Some probabilistic forecast models of contrail occur-

rence based on logistic regression have already been

developed. Travis et al. (1997) used a combination

of rawinsonde temperature and geostationary satellite

water vapor absorption data to develop a logistic model

of the occurrence of widespread persistent contrail

coverage. Jackson et al. (2001) created a contrail pre-

diction model using surface observations of contrails

and rawinsonde measurements of temperature, humid-

ity, and winds. In this study, we use contrail observations

from both the Global Learning and Observations to

Benefit the Environment (GLOBE) program (available

online at http://www.globe.gov) and geosynchronous

satellite imagery along with numerical weather ana-

lyses and forecasts to create forecast models for the

prediction of persistent contrail formation. These mod-

els allow predictions of widespread contrail occurrences

on either a real-time basis or for long-term time

scales. More developed versions of the forecast models

could eventually be used in aviation for the prevention
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of persistent contrail production, whereas long-term

studies could focus on estimating the radiative impact of

contrails on regional or global climate.

Despite the success of the probabilistic forecast mod-

els described in Travis et al. (1997) and Jackson et al.

(2001), several questions remain about the usefulness

of these models. The former study used only a limited

number of observations, whereas the latter only con-

sidered contrail observations within limited geographic

(New England states) and temporal (two weeks in

September) domains. Neither study attempted to use

numerical weather forecast data to predict contrail

occurrence. The use of prognostic meteorological data

within the logistic models would allow for longer fore-

cast lead times than logistic models developed from

observations only. Such longer lead times would be

helpful if contrail mitigation efforts are considered.

In this paper, we assess the ability of logistic models

to provide a valuable and accurate diagnosis/prediction

of persistent contrail occurrence via numerical weather

models. Specifically, we evaluate a sample of logistic

contrail forecasts based on RUC and ARPS data and

observations of contrail occurrence. The value of the

contrail prediction models is then discussed in the con-

text of a forecast evaluation theory.

The next section describes the meteorological data

and contrail occurrence observations used to develop

the statistical contrail occurrence models, and section 3

presents and evaluates some examples of logistic mod-

els. The final two sections briefly summarize and discuss

the overall value of the logistic forecasts.

2. Data and methodology

a. Meteorological data

To provide atmospheric predictors for the logistic

models, we use nearly 15 months (April 2004–27 June

2005) of meteorological data from two high-resolution,

operational numerical weather analyses. Profiles of tem-

perature, humidity, horizontal wind speed and direc-

tion, and vertical velocity were derived by using hourly

analyses from the 20-km resolution RUC model and

from the 27-km resolution ARPS analyses in 25-hPa in-

tervals from 400 to 150 hPa. [After 1200 UTC 28 June

2005, the 13-km resolution version of the RUC model

became operational, with significant differences in upper-

tropospheric humidity (UTH).] Because of limitations

in computational resources, both the RUC and ARPS

data were stored at approximately 18 3 18 horizontal

resolution. In addition to the RUC and ARPS analyses,

ARPS 1-day, 2-day, and 3-day forecasts were also used to

build logistic models.

The meteorological data were downloaded each day

to a local computer. The data are subject to inter-

ruptions including computer and power failures, full

disks, operator errors, lack of data availability, and

other problems. Thus, approximately 77% of the hourly

ARPS and 99.7% of the RUC data were collected dur-

ing the time period. Two large gaps (between 20 August

and 28 September 2004 and between 21 January and

21 February 2005) accounted for nearly 85% of the

ARPS data loss. The ARPS forecasts had a slightly

larger loss rate than the ARPS analyses because some-

times the forecasts were not available even though the

analyses were available.

Both the RUC and the ARPS have been built for the

prediction of storms and precipitation, and the accurate

prediction of UTH is of secondary importance. Both

models contain, at most, only slight ice supersaturations,

which appear incidentally as the result of numerical is-

sues. The RUC analyses do not allow relative humidity

with respect to ice (RHI) to exceed 100% by more than a

few percent at pressures below 300 hPa, whereas the

RHI values in the ARPS analyses rarely exceed 112%.

No ice supersaturation occurs in the ARPS forecasts; the

maximum RHI is only 100%. The ARPS forecasts in-

cluded in this study use a bulk three-phase ice micro-

physics scheme (Lin et al. 1983; Tao et al. 1989) and do

not have a separate cirrus or contrail parameterization.

Thus, methods like logistic regression are necessary to

deal with these limitations to predict contrail occurrence

using RUC or ARPS data.

b. Satellite data

Visual inspection of multispectral satellite data was

used to detect persistent contrail occurrence for some

of the logistic models. We inspected infrared (10.8 mm)

and water vapor (6.5 mm) channel data from the Geosta-

tionary Operational Environmental Satellite-12 (GOES-12)

and infrared (10.8 mm) minus split window (12.0 mm)

brightness temperature difference (BTD) data from Na-

tional Oceanic and Atmospheric Administration (NOAA)

Advanced Very High Resolution Radiometer (AVHRR)

imagers. The BTD data are especially sensitive to the

presence of contrails (Lee 1989).

c. Surface data

Persistent contrail occurrence was also determined

from a set of surface observations. The GLOBE pro-

gram collects observations of contrail occurrence from

primary and secondary schools across the contermi-

nous United States (CONUS). In May 2003, GLOBE

initiated a contrail observation protocol to gather and

classify contrail observations. A primary goal of the

GLOBE program is to use detailed written protocols to
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enable students to provide scientifically valuable mea-

surements of environmental parameters (Brooks and

Mims 2001). Over 18 500 observations of cloud cover-

age and contrail occurrence were reported over the

CONUS between April 2004 and June 2005. Observa-

tions of spreading, persistent contrail observations are

classified as observations of contrails that remain in the

sky after the aircraft has flown out of view of the

observer that are wider than the width of a finger held at

arm’s length. This width corresponds to a contrail at

least 350 m wide, based on a contrail altitude of 10 km

(O’Shea 1991), which is the minimum width expected

to be detectable in AVHRR imagery.

The GLOBE contrail dataset contains observations

from 417 schools. The schools are mostly located in

highly populated regions with substantial air traffic at

cruise altitudes above 7.6 km (Duda et al. 2009). Unlike

the Jackson et al. (2001) study, no flight track infor-

mation was available to determine the altitude of the

observed persistent contrails. Nearly all schools reported

only one observation per day, but only 123 of the schools

reported more than 30 observations during the 15-month

period. Approximately 92% of all observations were

between 1430 and 2030 UTC and nearly 58% of the total

were between 1630 and 1830 UTC. To improve the

ability to detect contrails, this study only used observa-

tions from a selected group of 11 schools that were taken

under mostly clear skies (noncontrail cloud coverage

less than 25%).

d. Data processing

Before deriving the logistic models, the meteorologi-

cal data were checked for missing data and matched in

time and location with the surface and satellite observa-

tions of contrails. No contrail observations with missing

meteorological data were used in the statistical forecast

models.

To match the RUC data with the contrail occurrence

observations, meteorological variables from the RUC

analyses closest in time with the contrail observations

are linearly interpolated to the location of each contrail

observation. An observation is not used if the time dif-

ference between the observation and the RUC analysis

was greater than 2 h (nearly all pairs were matched to

within 1 h). A similar procedure is used to match the

ARPS analysis data with the contrail observations. For

the ARPS forecast data, the meteorological data from

the forecast time matching to within 1 h of the obser-

vation were used. Because the ARPS forecasts begin at

0000 UTC and all of the contrail observations from the

11 schools used in this study occurred between 16 and

20 UTC, the 1-day forecasts refer to the 16–20-h forecast

model time, the 2-day forecasts refer to the 40–44-h

forecast model time, and the 3-day forecasts refer to the

64–68-h forecast time.

For convenience, atmospheric humidity in both me-

teorological datasets was usually expressed in the form

of the maximum RHI between 150 and 400 hPa. For the

ARPS data, the RHI was computed from the ARPS

fields of potential temperature and specific humidity at

the 25-hPa intervals to determine the level of maximum

upper-tropospheric humidity. Because it is expected

that persistent contrails are most likely to form where

relative humidity is greatest, for each contrail observa-

tion, the pressure level between 400 and 150 hPa with

the maximum RHI that had a temperature less than or

equal to 2408C was identified. Although the observed

contrails may have formed at other levels, this level was

chosen to represent the most probable level for contrail

formation in the absence of contrail altitude information

and to provide a consistent representation of humidity at

typical commercial aircraft flight levels. The tempera-

ture constraint was added to eliminate areas where the

atmosphere is likely to be too warm to form contrails

(Appleman 1953).

e. Statistical technique

Logistic regression (Hosmer and Lemeshow 1989)

was used to create a probabilistic estimate of persistent

contrail formation based on the meteorological variables

from the RUC and ARPS models. The logistic model

assumes the following fit:

P ’
1

1 1 exp[�(b
0

1 b
1
x

1
1 � � � 1 b

p
x

p
)]

, (1)

where P is the predictand (probability of persistent

contrail formation) and bi (for i 5 1, . . . , p) is the set of

coefficients used to fit the predictors (xi) to the model.

All predictors used in this study are based on meteoro-

logical quantities in the upper troposphere that are

expected to be physically related to the formation of

spreading, persistent contrails (e.g., relative humidity,

temperature, vertical motion, and wind shear).

The maximum likelihood method was used to esti-

mate the unknown coefficients of bi and to fit the logistic

regression model to the data. The chi-square statistic

x2 was employed to assess the goodness of fit of each

logistic model to the meteorological data. A stepwise

regression technique was used to reduce the number of

predictors to an optimal number of variables. In each

step of the technique, a new predictor is added to the

logistic model and the chi-square statistic is compared

with the previous model. The new predictor that pro-

duces the largest improvement in model fit (i.e., the

largest increase in x2) is added to the model. To avoid
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overfitting the model, the stepwise regression technique

is allowed to add predictors to the model until the test

for statistical significance reaches a significance level

(i.e., p value) of approximately 0.05.

f. Predictors

Table 1 includes all potential predictors considered

for this study. A total of 61 potential predictors from the

numerical weather models were used to develop the

logistic regression models. All of the variables are ex-

pected to influence the formation (or the spreading rate)

of persistent contrails. From this set of potential pre-

dictors, the stepwise regression method was used to

reduce the number of predictors to approximately six.

Several of the variables, including the temperature,

vertical velocity, wind speed, and wind direction, were

computed at the level of maximum RHI, and the vertical

shear of the horizontal wind and temperature lapse rate

(a measure of atmospheric stability) are computed for

the 25-hPa layer below the level of maximum RHI. The

logistic models developed from the ARPS analyses and

forecasts do not include precipitable water, tropopause

temperature, tropopause pressure, or any other variable

formed by the combination of those parameters because

they are not included in the ARPS analyses. Each of

these variables is indicated by asterisks in Table 1.

Several other meteorological variables were also

considered as possible predictors in the logistic models.

In addition to determining the variables at the level of

maximum RHI, the 200–300-hPa layer averages of sev-

eral variables were computed, as well as regional mean

variables, which are the mean (of the 200–300-hPa

means) of all model grid points within 200 km of the

contrail observation location. Most commercial air traf-

fic over the CONUS cruises between 200 and 300 hPa

(Garber et al. 2005). The regional mean was developed

to account for some of the uncertainty in the meteo-

rological fields forecast by the ARPS model. Finally,

‘‘upstream’’ means of temperature and RHI were

also computed. The upstream mean is defined as the

200–300-hPa layer mean average of the variable located

2 h upstream from the contrail observation location.

The upstream point is determined by computing a 2-h

backward trajectory using the 200–300-hPa mean wind

from the original observation point. The upstream var-

iables were included because most persistent contrails

seen within GOES infrared imagery require 1–2 h be-

fore they become wide and thick enough to be visible in

the satellite imagery (Duda et al. 2004).

g. Equation development

Two groups of logistic models were created by using

the meteorological data and observations of contrail

occurrence. The first group of models is based on

surface-based contrail observations supplemented with

satellite observations of contrail occurrence. These mod-

els were designed to relate the general occurrence of

persistent contrails with the meteorological conditions,

and are hereinafter referred to as the SURFACE models.

The second group of models is similar to the work of

Travis et al. (1997) where a selected subgroup of ob-

servations within the presence of widespread persistent

contrails [called both here and in Travis et al. (1997) as

‘‘outbreaks’’] is used to build the logistic models. They

are called the OUTBREAK models in this study.

The contrail observations were separated into a

dependent (from which the statistical models were cre-

ated) and an independent (on which the models were

tested) dataset. Two-thirds of the data were randomly

selected to build the dependent dataset, whereas the

independent dataset comprises the remaining one-third

of the data.

To determine the accuracy of the contrail models, two

statistical measures used in Part I were employed. The

contrail formation forecasts are separated into four

categories based on the forecast and its outcome: a is

the number of hits, b is the number of false alarms, c is

the number of misses, and d is the number of correct

rejections. The first measure is the percent correct (PC),

and equals (a 1 d)/(a 1 b 1 c 1 d). PC is defined as the

ratio of the correct forecasts to the total number

of forecasts. The second variable is known as the

Hanssen–Kuipers discriminant (HKD) or the true skill

statistic (Wilks 1995). The HKD is calculated as (ad 2 bc)/

[(a 1 c)(b 1 d)]. This measure of forecasting skill mea-

sures the skill of the ‘‘yes forecasts’’ and ‘‘no forecasts’’

of contrail occurrence equally, regardless of the relative

numbers of each forecast. Gandin and Murphy (1992)

show that HKD is the only equitable skill score for a

two-event (i.e., yes or no) forecast and thus accounts for

the tendency of a no-contrail-occurrence forecast being

more likely to be correct than a yes, because persistent

contrail occurrence is relatively rare.

3. Logistic models based on numerical weather
analyses

a. SURFACE models

A subset of 11 GLOBE reporting locations with at

least 50 contrail observations under mostly clear skies

(noncontrail cloud coverage less than 25%) were chosen

for building the SURFACE logistic regression models.

Because these schools provided multiple observations

throughout the 15-month period, we expect that these

locations would be more likely to provide high-quality

contrail observations among the GLOBE participants.
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Table 2 lists the location of each GLOBE school, and

the locations of the GLOBE schools are also shown in

Fig. 1. All schools, with the exception of Box Elder,

Montana, are located in regions with substantial com-

mercial air traffic at cruise altitudes above 7.6 km during

the observation period (Duda et al. 2009). (We note

that other areas of substantial air traffic in the United

States, including the coastal Pacific Northwest and the

Great Plains, are not sampled within this study.) From

this group of locations, a set of 379 observations was

selected that could be ‘‘verified’’ by visual inspecting

time series of GOES imagery for contrail occurrence–

nonoccurrence. This verification is somewhat subjective

as the surface observer under mostly clear skies can

detect much narrower and thinner persistent contrails

than automated or visual analysis of the 4-km resolution

satellite imagery. Of the 379 observations, the surface

and satellite results matched nearly 75% of the time. In

about 18% of the observations, the surface observer

reported persistent contrails, whereas none was appar-

ent in the satellite imagery; for the remaining 7% of

the observations, contrail occurrence was detected by

satellite but not reported by the GLOBE observer.

DeGrand et al. (2000) and Duda et al. (2009) have

previously noted differences in the detection of contrails

between collocated surface- and satellite-based obser-

vations. Surface observers often miss contrails forming

above lower cloudiness (although, by choosing only

mostly clear observations, this type of error should be

minimal here), misidentify linear cloud features as

contrails (or contrails as cloud streaks), or record the

observation incorrectly in the contrail report. Cloud

cover and the misidentification of cloud streets as con-

trails also hamper visual detection of persistent contrails

in the GOES imagery loops.

Two sets of probabilistic models were developed from

the GLOBE surface observations and the numerical

weather analysis data. The first set (denoted as Build 1)

TABLE 1. Potential parameters used in logistic regression models.

Parameter Name

Pressure at level of max RHI prs

Gradient Richardson no. at level of

max RHI

grad_ri

Vertical wind shear at level of

max RHI

shr

Mean vertical wind shear (200–300 hPa) mnshr

Lapse rate in 25-hPa layer above level

of max RHI

dtdz

Mean lapse rate (200–300 hPa) mndtdz

North–south wind speed at level

of max RHI

uwnd

East–west wind speed at level

of max RHI

vwnd

Mean north–south wind speed

(200–300 hPa)

mnuwnd

Mean east–west wind speed

(200–300 hPa)

mnvwnd

Vertical velocity at level of max RHI vv

Mean vertical velocity (200–300 hPa) mnvv

Regional mean vertical velocity regvv

Temperature at level of max RHI tmp

Mean upstream temperature upt

Mean temperature (200–300 hPa) mnt

Regional mean temperature regt

Max upper-tropospheric RHI rhi

Mean upstream RHI upr

Mean RHI (200–300 hPa) mnr

Regional mean RHI regr

Tropopause pressure* trp

Tropopause temperature* trt

Precipitable water* pwat

uwnd 3 uwnd uwnd2

vwnd 3 vwnd vwnd2

mnuwnd 3 mnuwnd mnuwnd2

mnvwnd 3 mnvwnd mnvwnd2

uwnd 3 vwnd uv

mnuwnd 3 mnvwnd mnuv

Wind speed (based on uwnd and vwnd) windspd

Mean wind speed (based on mnuwnd

and mnvwnd)

mnwindspd

Wind direction winddir

Mean wind direction mnwinddir

vv 3 vv vv2

mnvv 3 mnvv mnvv2

regvv 3 regvv regvv2

rhi 3 rhi rhi2

tmp 3 tmp tmp2

upt 3 upt upt2

mnt 3 mnt mnt2

regt 3 regt regt2

upr 3 upr upr2

mnr 3 mnr mnr2

regr 3 regr regr2

rhi 3 tmp rhitmp

upt 3 upr uptupr

mnt 3 mnr mntmnr

regt 3 regr regtregr

mnt 3 rhi mntrhi

(mnt 3 rhi) 3 (mnt 3 rhi) mnt2rhi2

TABLE 1. (Continued)

Parameter Name

tmp 3 regt tmpregt

mnt 3 upt mntupt

mnt 3 regt mntregt

rhi 3 regr rhiregr

rhi 3 upr rhiupr

rhi 3 regvv rhiregvv

mnt 3 regvv mntregvv

pwat 3 pwat* pwat2

mnt 3 trt* mnttrt

mnt 3 pwat* mntpwat

* The logistic models developed from the ARPS analyses and

forecasts do not include this parameter.
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used the GLOBE contrail occurrence observations,

whereas the second set (denoted as Build 2) used the

GOES observations of contrail occurrence. As discussed

above, the observations were randomly separated into

dependent and independent datasets to create and to

test the model, respectively. For convenience, the step-

wise regression was stopped after 6 predictors were

chosen, because additional predictors rarely improved

the skill scores of the logistic models significantly. Be-

cause of the large number of potential predictors (some

closely related to each other), many combinations of

predictors produced chi-square statistics nearly equal to

the best-fitting model. Therefore, the logistic models were

evaluated by averaging the skill scores from the five

models with the highest chi-square statistic, thus producing

a mean skill score from each group of meteorological data.

Table 3 presents the mean PC and HKD skill scores

for both builds of the logistic model for each group of

meteorological data. For simplicity, the critical thresh-

old for determining contrail occurrence was 0.5 for all

cases. The logistic models from the first two rows of

Table 3 are built from analysis data and therefore di-

agnose contrail occurrence from the analysis data. The

remaining models are true forecasts evaluated by us-

ing forecast data but are developed from either analysis

or forecast data. In every case except one (the HKD

score for the ARPS 3-day forecast), the skill scores of

Build 2 were higher than the skill scores of Build 1. Also,

the differences between the Build 2 and Build 1 scores

were largest when analysis data were used and smallest

when 3-day forecast data were used. The accuracy of

the models generally decreased as the length of the

forecast increased. When the independent datasets (the

remaining third of the observations not used in the de-

velopment of the models) were used to evaluate the

skill of the forecast models, the PC ranged from 0.69 to

0.86 for the Build 2 models and the HKD varied from

about 0.18 to 0.59. These scores are worse than the results

TABLE 2. Locations of the GLOBE schools used in the development of the SURFACE models.

GLOBE school code School Name Location Lat Lon

LJhOS6Y Most Pure Heart of Mary Mobile, AL 30.708N 88.058W

c8t2giz Ponderosa Elementary School Fayetteville, NC 35.058N 78.598W

pWouwAn Norfork Elementary School Norfork, AR 36.208N 92.278W

YP8wiev Norfork Rebels 4-H Club Mountain Home, AR 36.248N 92.328W

hzJ5KKx Hartland Consolidated School Hartland, ME 44.888N 69.458W

ZZSo0PT Gold Trail School Placerville, CA 38.788N 120.898W

ztYjGF9 Agua Caliente Park Tucson, AZ 32.178N 110.448W

usozUPL Waynesboro Senior High School Waynesboro, PA 39.758N 77.578W

bxU7W5h Stone Child College Box Elder, MT 48.298N 109.878W

mA5dQYm Whitehall High School Whitehall, MI 43.388N 86.328W

xXVJ4PP Park View Elementary School Washington, DC 38.568N 77.018W

FIG. 1. The centers of persistent contrail outbreaks identified from GOES imagery for the

OUTBREAK models (crosses), and GLOBE schools reporting persistent contrail coverage for

the SURFACE models (squares).
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from Jackson et al. (2001). They developed a regional

contrail formation model (including nonpersistent con-

trails) based on a network of surface observers across

New England coordinated with air traffic control infor-

mation such that the observers knew exactly when to

expect flights. The observations were collected during

a two-week period in September. Jackson et al. (2001)

used nonsynoptic radiosonde launches to gather hu-

midity information and report a PC around 0.85 and an

HKD near 0.66.

The most common predictors for the Build 1 SURFACE

models tend to be related to temperature when the

models are derived from RUC/ARPS analysis data. No

specific kind of variable is favored when the Build 1

models are derived from ARPS forecast data. The most

common predictors for the Build 2 SURFACE models

tend to be related to temperature, relative humidity,

and wind direction when the models are generated using

RUC or ARPS analyses and to vertical velocity and

the product of temperature and relative humidity with

respect to ice when the models are developed from

ARPS forecasts.

b. OUTBREAK models

The logistic models created using GOES observations

of contrail outbreaks are similar to the model created by

Travis et al. (1997), who derived the meteorological data

from a select set of atmospheric conditions. The water

vapor channel data from noncontrail locations were

taken from either completely clear or completely cloudy

pixels close to the contrail outbreak regions, whereas

contrail observations were taken at locations where con-

trails were wide enough to fill the entire satellite pixel.

Cloudy pixels may contain contrails also, but in those

cases they would have been obscured by the clouds. In

this study, the contrail observation locations were chosen

from only two sets of locations: either from a point in the

clear skies near the contrail outbreak or from a point in

the center of the contrail outbreak (thus, two observa-

tions were used from each outbreak). This method allows

for a sharp distinction in the meteorological data between

the contrail and noncontrail areas. As a result, logistic

models of high accuracy can be produced.

Visual inspection of AVHRR images displaying the

BTDs between the 10.8- and 12.0-mm channels and the

BTDs of loops of GOES infrared and water vapor im-

agery were used to identify approximately 50 examples

of contrail outbreaks—areas of distinct, line-shaped

contrails covering at least 100 000 km2 at various loca-

tions around the CONUS between August 2004 and

June 2005 (see Fig. 2 for an example of a typical contrail

outbreak). Because the horizontal resolution of the

GOES infrared imagery is 4 km, the contrail outbreaks

are likely to be composed of extremely wide, well-

developed spreading persistent contrails (or perhaps

composed of several narrower contrails in close prox-

imity to each other). Figure 1 shows the central locations

of the contrail outbreaks.

A total of 104 satellite measurements in and around

large contrail outbreaks was used to make the inde-

pendent and dependent datasets. The stepwise regres-

sion was stopped after four predictors were chosen, and

the skill scores from the five models with the highest chi-

square statistic were averaged to produce a mean skill

score for each group of meteorological data. The mean

PC and HKD skill scores for the top five models pro-

duced from each group of meteorological data are pre-

sented in Table 4 (once again, the critical threshold for

determining contrail occurrence was 0.5 for all cases).

The skill scores in Table 4 are similar to the results from

Travis et al. (1997). They reported PCs near 0.90 and an

HKD around 0.85.

The skill scores of the logistic models developed from

the OUTBREAK data generally decreased as the length

of the forecast increased. The differences between the

skill scores of the logistic models created from the ARPS

TABLE 3. PC and HKD for several versions of RUC and ARPS analyses and forecasts for the SURFACE models. The percentage

correct/HKD scores from the models evaluated with the independent data are presented in the left-hand column under each build, and the

scores resulting from the evaluation with the dependent data are presented in parenthesis in the right-hand column under each build. The

notation ‘‘Analysis eval. w/’’ represents the logistic models developed from ARPS analysis data that are evaluated using the ARPS 1-day,

2-day, or 3-day forecasts.

Model Build 1 PC/HKD Build 2 PC/HKD

RUC analysis 0.660/0.247 (0.697/0.275) 0.811/0.379 (0.845/0.525)

ARPS analysis 0.672/0.206 (0.721/0.370) 0.778/0.351 (0.884/0.661)

ARPS 1-day forecast 0.667/0.214 (0.730/0.305) 0.856/0.597 (0.872/0.661)

Analysis eval. w/1-day 0.681/0.265 (0.688/0.230) 0.807/0.398 (0.820/0.424)

ARPS 2-day forecast 0.734/0.388 (0.710/0.346) 0.831/0.553 (0.832/0.554)

Analysis eval. w/2-day 0.682/0.188 (0.674/0.262) 0.802/0.450 (0.798/0.431)

ARPS 3-day forecast 0.679/0.187 (0.707/0.202) 0.688/0.179 (0.808/0.351)

Analysis eval. w/3-day 0.603/0.104 (0.616/0.084) 0.689/0.236 (0.712/0.241)
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analyses and those from the models developed from the

ARPS forecasts are larger in Table 4 than in Table 3.

The OUTBREAK models are developed from a smaller

set of observations than the SURFACE models; because

the OUTBREAK models are tuned to sharply defined

meteorological conditions, they are more sensitive to

the errors in the meteorological fields that are present in

forecast models. Thus, this group of logistic models

highlights the effects of forecast errors in the logistic

model results. The most common predictors for the

OUTBREAK models tend to be wind direction, atmo-

spheric lapse rate (dT/dz), temperature, RHI, and the

product of temperature and RHI.

c. Effect of random error on logistic models

Part I investigated the effects of random measurement

errors of relative humidity, temperature, and vertical

velocity on logistic models developed from a set of sim-

ulated meteorological measurements. A simple set of

physical assumptions based on those three meteoro-

logical variables was used to determine the contrail oc-

currence associated with the simulated measurements.

Actual contrail observations are not likely to be so

strongly coupled to such measurements, because other

meteorological variables probably affect the occurrence

of spreading persistent contrails and errors in the de-

termination of contrail occurrence within the observa-

tions themselves would also affect the link between

these variables and contrail occurrence.

To investigate the effects of random measurement

error on logistic models developed using actual contrail

occurrence observations, three scenarios were created

that introduce different levels of random error into the

OUTBREAK models developed from the RUC and

ARPS analyses. The errors are the same as those in-

troduced in the Part I scenarios B2k, B2l, and B2m.

Case 1 uses normally distributed errors in temperature,

RHI, and vertical velocity with standard deviations of

1 K, 5%, and 1 cm s21, respectively, whereas the stan-

dard deviations of the corresponding errors in cases

2 and 3 are 2 K, 10%, and 2 cm s21 and 3 K, 15%, and

3 cm s21, respectively. The errors were added to the

meteorological data used in both the dependent and

independent data, and the logistic models were created

in the same manner as above. Because of the small

sample sizes used in the OUTBREAK models, cases 1,

FIG. 2. Persistent contrails are highlighted in a channel 4 (10.8 mm) minus channel 5

(12.0 mm) BTD image from the NOAA-17 overpass at 1531 UTC 18 Apr 2005 over the

northeastern United States.

TABLE 4. As in Table 3, but for the OUTBREAK models.

Model PC/HKD

RUC analysis 0.833/0.681 (0.827/0.652)

ARPS analysis 0.872/0.731 (0.959/0.919)

ARPS 1-day forecast 0.675/0.323 (0.866/0.722)

Analysis eval. w/1-day 0.812/0.628 (0.784/0.560)

ARPS 2-day forecast 0.500/0.108 (0.769/0.494)

Analysis eval. w/2-day 0.600/0.287 (0.691/0.375)

ARPS 3-day forecast 0.467/-0.067 (0.779/0.555)

Analysis eval. w/3-day 0.347/-0.307 (0.672/0.344)
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2 and 3 were run 1000 times using 1000 different reali-

zations of random error to determine the variability of

the effect of random error on the models. The results of

the simulations are presented in Table 5, where the skill

scores for all models were evaluated by using the inde-

pendent data only.

In addition to the results from the modified

OUTBREAK models in Table 5, the synthetic data from

Part I were used to simulate the OUTBREAK model

results. We selected 105 of the observations from the first

synthetic dataset, choosing contrail formation conditions

for approximately half of the observations (similar to the

observations used in the OUTBREAK models). Two-

thirds of the observations were randomly selected to

build the models (using scenario B2) and the remaining

third was used to evaluate the models and determine

skill scores. The skill scores from the top five best-fitted

four-predictor models were averaged together and are

presented in Table 5. Once again, 1000 realizations of

random errors in the three meteorological variables were

then added as in cases 1, 2 and 3, and the resulting skill

scores are shown in Table 5 as simulation N. We note that

the sensitivity of the real observations to the addition

of random error is less than that of the synthetic obser-

vations. Part of this difference may be due to the real

contrail occurrence observations being subject to var-

iables other than temperature, humidity, and vertical

velocity, but the logistic models developed from the

real observations have also been developed with meteo-

rological data that already have some nonzero but

unknown inherent random errors. Another simulation

using the synthetic data is presented in Table 5 (simula-

tion E). Simulation E is identical to simulation N except

for one difference. The meteorological variables in the

original 105 observations have been modified by add-

ing the type of random errors in case 3, which is similar

to what may be expected in the real observations. The

simulation E results show a similar insensitivity to the

addition of random error evident in the results derived

from the real contrail occurrence observations.

4. Discussion

A comparison of results among all of the models

presented here gives some insight into the overall

quality of the logistic models, under which conditions

they perform well, and where further improvement is

necessary. Table 3 shows that the Build 2 SURFACE

models are consistently better than the Build 1 models.

Although the difference in model performance could be

easily explained by postulating the superior quality of

satellite-based contrail observations compared to the

observations of primary and secondary school students

with little training, it is important to note some differ-

ences between surface- and satellite-based observations.

Surface observers often miss contrails forming above

lower cloudiness (although, by choosing only mostly

clear observations, this type of error should be minimal

here) or record the observation incorrectly in another

category (some GLOBE observations are suspected to

suffer from such a clerical error). Both the manual and

the automated methods for detecting persistent con-

trails in satellite imagery are also hampered by cloud

cover and by the misidentification of cloud streets as

contrails, or contrails as cloud streets (Mannstein et al.

1999). Surface observers, however, can detect much nar-

rower and probably optically thinner contrails than those

seen in the 4-km resolution satellite imagery of this study.

If the students are detecting relatively thin but persistent

contrails within thin layers of supersaturation in the upper

troposphere, then a weaker correlation between the nu-

merical weather model variables and the occurrence of

persistent contrails would be expected.

As noted earlier, the differences between the Build

2 and Build 1 skill scores tended to decrease as the

length of the forecast increased from analysis time to the

TABLE 5. PC and HKD for OUTBREAK models developed from the RUC and ARPS analyses and from two simulations of the

OUTBREAK models using the synthetic data from Part I. The mean PC/HKD of the 1000 realizations for cases 1, 2 and 3 are presented

with the standard deviation of the scores in parenthesis.

Case RUC analysis ARPS analysis

No error added 0.833/0.681 0.872/0.731

Case 1 (1 K, 5%, 1 cm s21) 0.836 (0.017)/0.694 (0.034) 0.871 (0.024)/0.726 (0.052)

Case 2 (2 K, 10%, 2 cm s21) 0.826 (0.025)/0.675 (0.050) 0.856 (0.037)/0.697 (0.079)

Case 3 (3 K, 15%, 3 cm s21) 0.810 (0.032)/0.641 (0.063) 0.829 (0.048)/0.646 (0.098)

Simulations with synthetic data Simulation N Simulation E

Base 0.829/0.639 0.783/0.497

Case 1 0.841 (0.034)/0.670 (0.080) 0.776 (0.026)/0.484 (0.051)

Case 2 0.798 (0.049)/0.568 (0.114) 0.765 (0.038)/0.462 (0.081)

Case 3 0.764 (0.054)/0.489 (0.125) 0.753 (0.045)/0.435 (0.099)
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3-day forecast. It is likely that, in both sets of models,

the increasing errors in the forecasted variables over

time tended to obscure their differences between the

two builds.

The accuracy of the SURFACE and OUTBREAK

models is less than the accuracy of the test case models in

Part I created from synthetic observations. Part of the

reason for the lower accuracy is that factors other than

temperature, relative humidity, and vertical velocity

affect the development of spreading persistent contrails.

The results from Part I show that the addition of verti-

cal velocity to the determination of contrail formation

resulted in slightly less accurate models, even when all

factors were known and accounted for in the logistic

model. The most common predictors chosen in the

SURFACE and OUTBREAK models tended to be

related to temperature and humidity, but other variables

including vertical velocity, wind direction and speed,

and atmospheric lapse rate were frequently chosen as

predictors. Previous studies of contrail occurrence sug-

gest that high contrail incidence is associated with areas

of baroclinicity and thus with areas where wind speed,

vertical velocity, and lapse rate may have significant

departures from mean conditions (DeGrand et al. 2000).

The results from Carleton et al. (2008) suggest that at-

mospheric variables lower in the atmosphere that were

not included in this study may also be valuable pre-

dictors. The list of meteorological variables in Table 1

is not exhaustive, and other combinations of variables

not presented here may be better predictors of contrail

occurrence.

The differences between the accuracy of the depen-

dent and independent results in Tables 3 and 4 indicate

whether an adequate number of observations have been

used to build the logistic models. The dependent results

are often better than the independent results, which

suggests that the logistic models sometimes are too

finely tuned to the dependent sets and that more

observations are needed to build the logistic models.

The results from the OUTBREAK models, which

were developed using only a subsample of possible

atmospheric conditions, highlight this problem. The re-

sults for the OUTBREAK models show differences

between the dependent and independent results that are

3–4 times larger than those for the SURFACE models.

The OUTBREAK models are designed to have high

accuracy when using the dependent data. However, the

models do much worse when evaluated with the inde-

pendent data, which are not used in the construction of

the logistic models. The large differences between the

dependent and independent data skill scores are espe-

cially apparent in the OUTBREAK models developed

from ARPS forecast data.

One advantage of developing logistic models for

forecasts using the analysis data is that they have the

most accurate meteorological data and allow for more

accurate short-term forecasts than models built with

forecast data. Tables 3 and 4 present the skill scores of

several prognostic models developed from both ARPS

analysis data and ARPS forecast data. The skill scores of

the forecasts derived from models developed from the

analyses are always higher than the forecasts developed

from the forecast data (when assessed using the inde-

pendent data). The meteorological data in the ARPS

forecasts have so much error that the logistic models

respond to that error and tend to choose predictors that

fortuitously correlate with contrail occurrence within

that particular dependent dataset.

The accuracy of the models tended to decrease as the

length of the forecast increased. The atmospheric con-

ditions for the formation of persistent contrails in the

absence of natural cirrus tend to occur at the edges of

areas of high humidity and lower temperatures in the

upper troposphere, and the exact location and timing

of these regions are not always represented well in

numerical weather models. Most of the variables chosen

as possible predictors in the logistic models are based on

meteorological quantities at the point of interest. Even if

the general synoptic features of the forecast are accu-

rate, relatively small errors in the motion or size of high

humidity areas could reduce the accuracy of the contrail

prediction models substantially. Model errors may be mit-

igated if more regionally or temporally averaged variables

were used in the creation of the logistic models.

This study attempted to build a universal contrail

model suitable for all times across the CONUS, whereas

both seasonal and regional differences in contrail oc-

currence are common (DeGrand et al. 2000; Carleton

et al. 2008). It appears that a universal model for the

entire CONUS may not allow for the highest accuracy;

as in probabilistic precipitation forecasts, local forecasts

for a specific location or region or for a specific season

may allow for more accurate models. The superior re-

sults from the spatially and temporally limited study of

Jackson et al. (2001) support this idea to some extent,

but they rely on having enhanced direct observations of

the meteorological fields, not degraded NWA fields.

An important quality of the contrail forecast model is

its overall value. The value of a forecast is defined here

following Murphy and Ehrendorfer (1987), such that

forecasts are of positive value only if they can lead to

different actions than those that the decision maker

would have taken in the absence of the forecasts. If

persistent contrail forecasts are to be of any value, for

example, in the case of diverting flights to reduce per-

sistent contrail cloud cover, then the cost C of diverting
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the flights must be weighed against the losses L that may

result as a consequence of the additional cloud cover

produced by the contrails. In the absence of a contrail

forecast, the decision maker would have to compare this

cost–loss ratio C/L to the climatological occurrence of

persistent contrails pc. If C/L . pc, then no flights would

ever be diverted, whereas all flights would be diverted if

C/L , pc. In general, it is expected that any valuable

forecast must be accurate enough such that the per-

centage of forecast misses pm [defined here as c/(c 1 d)]

must be less than or equal to the climatological fre-

quency (and the cost–loss ratio), and the percentage of

forecast hits ph [defined here as a/(a 1 b)] must be

greater than or equal to pc (and C/L). Murphy and

Ehrendorfer (1987) show that, if 0 # C/L # pm # pc #

ph # 1 or 0 # pm # pc # ph # C/L # 1, then the

problem of diverting or not diverting flights becomes

trivial. In the former case, the cost of diverting flights is

so inexpensive that all flights should be diverted to avoid

making contrails, whereas in the latter case the cost of

diverting flights is so expensive that no flights should be

diverted despite the loss incurred from the production of

contrails. The potentially wide range between pm and

ph in the test case models from Part I suggests that

logistic models would be able to produce valuable per-

sistent contrail occurrence forecasts for a variety of

cost–loss situations. The results from Part I derived from

synthetic observations show that pm 5 0.028 when the

climatological frequency is used as the probability

threshold and ph 5 0.506, even in scenario B1m where

the random error is maximized. If 0.5 is used as the

probability threshold, then pm 5 0.077 and ph 5 0.726 in

scenario B2m. For comparison, the Build 2 SURFACE

models built from (the dependent) and evaluated with

(the independent) ARPS analysis data have pm 5 0.169

and ph 5 0.573. Considering that the pc measured from

surface observers was 0.170 in Duda et al. (2009), and

0.152 in Minnis et al. (2003), the models presented here

have marginal value because pm approximately equals

pc. Logistic models built from a larger number of ob-

servations, however, may have positive value because

the pm and ph for the Build 2 SURFACE models built

from and evaluated with the same ARPS analysis data

(dependent data) are 0.094 and 0.810, respectively.

It is important to note that the conclusions of

Murphy and Ehrendorfer (1987) apply to a simple two-

parameter (occurrence versus nonoccurrence) system.

Much more complicated cost–loss relationships could

be possible if the full capability of a probabilistic fore-

casting system was used. For example, given a forecast

probability p in a forecast region, a fraction pd of all

flights within that region could be diverted. Also, reli-

able probabilistic forecasts inherently have extra value

to users compared to categorical (simple yes or no oc-

currence) forecasts because users can take advantage of

cost–loss analyses better with probabilistic forecasts

(Keith 2003).

5. Summary and concluding remarks

Probabilistic models of persistent contrail occur-

rence within the CONUS were developed from high-

resolution numerical weather analyses and forecasts.

Meteorological data from the 20-km Rapid Update Cycle

and the Advanced Regional Prediction System were

combined with observations of persistent contrail occur-

rence from surface reports and visual inspection of satellite

imagery. Two groups of logistic models were created.

The first group of models (SURFACE) is based on

surface-based contrail observations supplemented with

satellite observations of contrail occurrence. The most

common predictors selected for the SURFACE models

tend to be related to temperature, relative humidity, and

wind direction when the models are generated using

RUC or ARPS analyses. The second group of models

(OUTBREAK) is derived from a selected subgroup of

satellite-based observations of widespread persistent con-

trails. The most common predictors for the OUTBREAK

models tend to be wind direction, atmospheric lapse

rate, temperature, relative humidity, and the product of

temperature and humidity.

Some unanswered issues about the effectiveness of

the logistic model require future study. Aircraft may not

fly at all times through some regions where persistent

contrails are possible, although this is not expected to be

a major problem for this study because much of the

CONUS is nearly continually traveled by jet aircraft

throughout the day. Also, persistent contrails are un-

likely in regions where adverse weather conditions (such

as convection, turbulence, and icing) are expected to

occur and aircraft are likely to avoid. These errors in the

accurate determination of contrail occurrence should be

quantified and their impact on the logistic model should

be addressed.

More work is needed to realize the potential of logis-

tic contrail forecasts. The most direct way to make the

logistic models better is to reduce the errors within the

meteorological data used to build the models. Reduc-

tions in the uncertainties of meteorological variables

to a point where acceptable contrail forecasts are pro-

duced would be a good goal for NWA modelers. As

mentioned earlier, meteorological errors directly affect

the regressions developed in the logistic model; if the

errors are large enough, they may cause the model to

choose less pertinent predictors, further reducing model

accuracy. Meteorological analyses could be improved
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by using several methods including onboard measure-

ments from commercial aircraft, humidity-corrected

rawinsondes, and measurements from the Atmospheric

Infrared Sounder on the Aqua satellite to supplement

the temperature and relative humidity data in numerical

weather models. Methods to reduce errors in the de-

termination of contrail occurrence could also be pur-

sued. Additional studies are needed to determine if

other regionally or temporally averaged variables would

increase the accuracy of logistic models based on numer-

ical weather forecasts and if other atmospheric variables

may be relevant. Regional and seasonal models of contrail

occurrence may help improve the overall performance of

this type of persistent contrail prediction model.

Improvements to the logistic models are also possible

if reliable information regarding contrail altitude were

available. No information regarding flight altitude is

available in the GLOBE dataset, but specific knowledge

about the flight level of each contrail is difficult to obtain

even when flight track data are available, especially

when air traffic density reaches levels seen in most US

flight track corridor. The persistent contrails observed

both from the surface and by satellite are often several

minutes to hours old, and it is often not possible to

conclusively determine which aircraft produced which

contrail. Nevertheless, some contrail altitude informa-

tion is now possible with active sensing systems such as

the Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) on the Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO) platform

(Winker et al. 2004). Contrail altitude information would

be critical if the models were developed in the future

for contrail mitigation forecasts, because it would gen-

erally be more economical to divert aircraft vertically to

avoid persistent contrail production than to reroute the

aircraft horizontally. However, such contrail mitigation

prediction models would also require accurate details

of the vertical distribution of moisture in the upper

troposphere.

Logistic models of contrail occurrence provide an

additional advantage that has not been used here. Be-

cause logistic models compute a probability of occur-

rence, they could be useful in global circulation model

(GCM) simulations of contrail coverage (Ponater et al.

2002; Marquart et al. 2003) to determine the impact of

contrail radiative forcing on global climate. Such models

use a simple analytical formula based on relative hu-

midity and cirrus cloud coverage to determine contrail

coverage. The logistic models could be easily used

within the GCM to determine an appropriate contrail

coverage fraction for a region based upon the product of

the air traffic and the computed probability. Because the

logistic model can be developed by comparing GCM

simulations with actual contrail observations, it may

provide more accurate simulations of contrail coverage

than current methods.

Finally, some current numerical weather prediction

models such as the European Centre for Medium-Range

Weather Forecasts Integrated Forecast System now

include supersaturation over the ice phase explicitly

(Tompkins et al. 2007), and it is encouraging that the

latest versions of both the RUC and ARPS at the time of

this writing are now producing significantly greater

levels of ice supersaturation than were available for

comparisons with the observations used in this study. It

may therefore be possible to forecast potential contrail

coverage directly from forecast models that allow real-

istic ice supersaturations in the upper troposphere.
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